VHDP Overview

Inhalt
Y Ao AU T | B V) 7) RSP 3
1Y =Y T PSPPI 3
(60e] 2] oToT1=T o | ANUT T PP U PP TP PP PP UPUPUPPPPPUPPP 3
N3V @o] 4 T o To] aT=1 o) SO PP PPPPPPPPPPPRE 3
LCT=T 0 T=T o o OO PP PPPTOP 4
Yol Y=Y A T ol e LSRR 4
o ool OO PP 5
LT Lo I T T USSP UP O PPTPPROT 5
FUNCTION Lottt et s et e e e s b b et e e s s b et e e s sb et e e s sb et e e s mba e e e snbaeeesnbaeeesnnaeeess 6
S P FUNCEION o, 6
LCT=T 01T =) = PP PO PPPPPUPPON 7
(6o T] o [=Tot o] o [P R U PP P PP PPPPRP 7
VHDL (GENEIAE, WREN) ...ttt ettt e e et e e e e et te e e se bt e e e e ebaeeeeabteeesanbeaeeaanstesesanstsaesanseasasanseneesansensesanssenananns 7
D L 1Y o 1= 3PP PPPPPPPPPRS 8
BIT, BIT_VECTOR, BOOLEAN ...ttt ettt ettt st s e st et e e s bt e satesate s bt e bt e beesbeesbeesaeeeaseenbeenbeesaeesutesabeenbeebeennees 8
STD_LOGIC, STD_LOGIC_VECTOR ... e aeeeaeeaeeens 8
UNSIGNED, SIGNEDeoittiiieiieeiteie ettt sttt ettt st st et e bt e s bt e s st e st e e st e bt e beesmeesaeesae e e s e enbeesaeesanesareeaneenneennees 8
INTEGER, NATURAL, POSITIVE ...ttt ettt ettt e e ettt e e e e e e s tb et e e e e e e e s nabe e teeeeeeeaannreeeeeeeeeaannsreeeaaaeann 9
User defined types (ENUM, Array, RECOIA)oiiiiiiiiiieiiiie e ettt e e ettt e e ettt e e e ettt e e e etteeeeeataeeeesssaeeeesnseeeesansaesasanssaeesanseneenn 9
=8 U o PP PPPP PP 9
Y g - 1 9
2 Tol] o I TP P TSP PRSPPI 9
Declarations and @SSIZNMENTScciiiiiiiieiiiieeeeciteeeeecte e e eeitteeeeectteeeeeebaeeaeeatteeaeabeaeasaseseasasssseeassaseesassssesanssseesanssnsensnns 10
@ TR ROPRRSRUSRRRO 10
[D=Tol T 1 4T o PSPPSR PO PTOPPTOPRRPRRRPIN 10
F T F=4 T 1= o | 10
LCT= 1= o o PP PPPRT 10
(D LTol T 14 o] o F PSPPSRIt 10
1) =4 o - R UUEUS 10
[D]=Tol T 1 4T o FO T PSP P R P RSO PTOPPTOPRRRPRRPION 10
F T F=4 T 1= o | 10
L LA« [P PP UST O PRPRP 11
(D LTol T 14 o] o F PSP PR UUPRPRt 11
T 1= 0 = o 11
1070 01 = o | (OO PP PPRTPPPPT 11

[DT=To] =11 1 o T 11

Y=L a 1o ET e oY o< = 1 4 o] o -3 PP PR 11

L Y TR = =T PRPPPPTRRPPPRE 11
(OF T TR A o 1T o IR USRS 11
0 PP PPPP 11
(o Tol=Te [T g T o 1T =Y u o] o L PP 12
Y A=Y LT o] 1 K A A=Y o X £ U SURPRPR 12

Ny A=Y oL O YT =T o 114 o 1= o PP SRPPPPPR 12

) (] o I U TP PP P PP UUPPPPPOUPPPPPPP 12
WV NTTE <ttt ettt s bt s ht e sat e e bt e be e bt e eh e e ea et e be e bt e bt e b e e eheeeheeeaee e te e beeeheeeheesateebeebeebeenbeenaeas 13

S O P R Or e 13

L 1 SO TPV P PP PRSPPI 13
Math, cONVErsion and Other OPEIAtOrS.....ci i i e e e e st ee e e e sebte e e e s bteeeesstaeeessteeessastaeaesans 14
(O] ¢ =] &) o] - OO O P P P P PP PO PP PPUPPPPPUPUPPPPPPP 14
Use @ different CloCK fOr PrOCESS: ...cooviiiiieeiie ettt ettt ettt e st e s be e e sat e e s bt e e sabeesabeessbeesabaeesareeas 14

BN 2= o0 01 VZ=T] [0 o 14

Y Y YT A [or=Y oY o J=T - | 4 oY o TR 14

(0o T Yot (=T o =N u o T T R o o =T) OSSR S 14

Structural Syntax

Main
Main translates to the top-level entity in VHDL. This is the main file for the project.

A CLK input is always created and used for all processes as default.

Example:

Main
(
LED : OUT STD_LOGIC :=‘0’;
)
{

}

In the brackets, Signals are declared that will be connected to the FPGA I/Os. Package can be added in the Area too.

In the brace is the area for Process, NewComponent and Signal declarations.

Component

Component is a component for your FPGA design.

It works the same as Main except of three main differences: It has a name, you can add Generic to set parameters of
the component and the 1/Os will be connected to Signals in a different Component or in Main.

You can add an instance with NewComponent.

Example:

Component <Name>

(
Generic (CLK_Frequency : NATURAL := 50000000;);

LED : OUT STD_LOGIC := ‘0’;
En :INSTD_LOGIC := ‘0’;

)

{

}

NewComponent
NewComponent adds an instance of a Component in a different Component or in Main.

Example:

NewComponent <Name>

(
CLK_Frequency => 50000000,

LED => LED,
En =>‘1,

);

In front of NewComponent stands the name of the Component.

In the brackets, parameters from Generic can be assigned to values, constants or can be removed to use the default
value (here 50000000 from Component).

The I/Os can be assigned to values, constants, signals and outputs can be removed if not used.

Generic
Is used to set parameters of a component, like the number of inputs to debounce or the clock frequency.

Example:

Component <Name>
(
Generic (
CLK_Frequency : NATURAL := 12000000;
Inputs range 1 to 8 : NATURAL;
Error_Correction : BOOLEAN := false;

);

NewComponent <Name>

(
CLK_Frequency => 50000000,

Inputs =>1,
--Error_Correction is false if not set

);

Package/Include
Can be added to Main or Component in the brackets. Package allows to use own datatypes and constants in the
whole project. Packages are included in all files. If you only want to use some of them, use Inlcude.

Example:

Main

(
Include (<Package Name>, ...);
Package <Package Name>

(
TYPE <Type Name> (a, b, ¢ ...);

)
LED : OUT STD_LOGIC := ‘0’;

)
{

}

You can put Package in a separate file with braces and can declare functions next to types and constants.

Example:

Package <Package Name>

{
TYPE <Type Name> (a, b, c ..);

Function <Function_Name> (return INTEGER; value_in : INTEGER)
{

.
}

Process

In Process, you write your code. Every CLK cycle this code is executed. If you want to use a different CLK, surround
your code with If(rising_edge(CLK2)) { ... }.

Example
Process <Name (optional)>
(
VARIABLE var : NATURAL range 0to 3 :=0;
)
{
If (...)
{

}
}

A name can be assigned to a process.

In the brackets, variables can be declared that can be assigned and read only in this process (they can be declared in
the brace too).

In the brace, the code can be written. Only If, Else, Elsif, Case, When and For should be used in the brace.

See Thread for the other operations.

Thread

Thread allows programming like with process-oriented programming languages.

You can use While and Wait together with If and Case. Everything will be converted to if-structures afterwards.
Thread also converts If, Case and signal assignments to work together with the procedure operations, because the If
without Thread wouldn’t wait for the While loop.

Example
Process()
{
Thread
{
While(Btn = ‘0’){}
Led <= 1";
Wait(10000);
While(Btn = “1’){}
Wait(10000);
}
}
What you must look for: Sometimes a signal e.g. has to be set from ‘0’ to ‘1’, but if you write
En<='0;
En<=1;

both assignments will be executed in the same cycle and a different Process would not see the change of the state.
What you can do is

En<=0;
Step{ En<=1’; }

This way En <="1" is executed in a separate step.

Warning: Variables are created in the compilation process. Names of procedure operations in combination with
numbers should not be used as names for own signals or variables.

Function
Functions can be used for implementing frequently used algorithms in your code. It takes zero or more values and
always returns a value, but you can only use If, Case or For, because it has to run in one cycle.

Example (overcomplicated)

Function add_two (return INTEGER; value_in : INTEGER)

{
VARIABLE example_var : INTEGER;

example_var :=value_in;
For(iINOTO 1)

example_var := example_var + 1;
return example_var;

StepFunction

StepFunctions can be used for implementing frequently used algorithms in your code that also uses e.g. While or
Wait.

The content inside the function is inserted at the position of NewFunction and names of the parameters are replaced
with the connected signals. Instead of a return value you can assign the value to a parameter and read the value of
the connected signal inside the Process. Variables that are declared in the function, are added to the process
variables and can also be used in the Process.

Example

StepFunction printChar

(
char : STD_LOGIC_VECTOR(7 downto 0);

ena : STD_LOGIC;

busy : STD_LOGIC;

data : STD_LOGIC_VECTOR(7 downto 0);
)
{

While(busy = ‘1) {}

data <= char;

ena<=1;

While(busy = ‘0’) {}

ena<=0;

While(busy = ‘1) {}
}

NewFunction printChar (x”56”, UART_Enable, UART_Busy, UART_Data);

Advanced: If you add FunctionContent in the function, the sections outside of FunctionContent will be added outside
of the Process where you add NewFunction.

Generate
Allows to add a component or an operation to the project multiple times or if a condition is met.

Example:

Generate (foriin0to 7)

{

NewComponent PWM_Generator

(

Duty => dutySig(i),
PWM_Out(0) => LEDs(i),
);
!

Connections

Connections can be used to help with connecting the Component I/Os with the correct FPGA 1/Os. If there are 1/Os in
Main with the same name that aren’t already connected, they will be connected automatically with the given FPGA
Pins.

Example:

Connections

{
RX =>D5,
TX => F4,
}

VHDL (Generate, When)

For all functions that are not (already) implemented, with VHDL{} you can add VHDL code to your VHDP code. If you
want to add something to the signal declaration area, you have to write AttributeDeclaration{VHDL{}}.

Example Generate

AttributeDeclaration

{
VHDL
{
COMPONENT BinaryToBcdDigit IS PORT(
CLK :IN STD_LOGIC;
Reset :IN STD_LOGIG;

)
END COMPONENT;
}
}

VHDL
{
digit_0: BinaryToBcdDigit PORT MAP (
CLK,
Reset,

Datatypes

BIT, BIT_VECTOR, BOOLEAN
Represents logic values and can be used together with logical operators.

Example BIT_VECTOR

VARIABLE BitVectorSig : BIT_VECTOR (7 downto 0) := (others => ‘0’);
Equals “00000000” (Order = “76543210")
Example BIT

VARIABLE BitSigl : BIT := ‘0’;
VARIABLE BitSig2 : BIT := ‘1’;

BitSigl := ‘1’;
If((BitSig1 AND BitSig2) = ‘1)

Example BOOLEAN

VARIABLE BoolSigl : BOOLEAN := false;
VARIABLE BoolSIg2 : BOOLEAN := true;

BoolSigl := true;
If(BoolSigl AND BoolSig2)

With Boolean you don’t have to write (BoolSigl AND BoolSig2) = true

STD_LOGIC, STD_LOGIC_VECTOR

STD_LOGIC is often used with VHDL, because it allows to set or read all possible states of an I/O. For example, for 12C,
the output must switch between ‘0’ and ‘2’ (not connected to GND or 3V3). In addition, it is helpful to know if an
input has a different state.

STD_LOGIC can be used like BIT, but with the different states
‘U’ <- Uninitialized
X’ <- Unknown
‘0’ <- Low
‘1’ <- High
‘7’ <- High Impedance
‘W’ <- Weak Unknown
‘L’ <- Weak Low
‘H’ <- Weak High
‘- <- Don’t Care

UNSIGNED, SIGNED

Signed and unsigned variables are bit vectors that can be used for mathematical operations. If a variable is a signed,
the range (7 downto 0) means a range from -128 to 127. If a variable is an unsigned, the range (7 downto 0) would
mean a range from 0 to 255.

Example

SIGNAL counter : UNSIGNED (7 downto 0) := (others => ‘0’);
counter <= counter + 1;

INTEGER, NATURAL, POSITIVE

Integer, natural and positive are numbers that have a range between two numbers and can be assigned to numbers.
Integer allows numbers from -2,147,483,647 to 2,147,483,647

Natural from 0 to 2,147,483,647 and Positive from 1 to 2,147,483,647

Example

SIGNAL counter : NATURAL range 0 to 255 :=0;
counter <= counter + 1;

User defined types (Enum, Array, Record)

Enum
Has different states with a custom name.

Example

TYPE EnumType IS (start, running, end);
SIGNAL EnumSig : EnumType := start;

EnumSig <= running;

Array
Allows to have a group of elements in one variable.

Example

TYPE PixelType IS ARRAY (0 to 2) OF NATURAL range O to 255;

TYPE RowType IS ARRAY (0 to 639) OF PixelType;

(TYPE RowType IS ARRAY (O to 639, 0 to 2) OF NATURAL range 0 to 255;)
SIGNAL Row : RowType := (others => (others => ‘0’));

Row(0)(0) <= 0;
Row <= ((0, 1, 2),
(3, 4,5),

(6 7,8));

Record
Allows different types to be combined in one.

Example

TYPE RGBType IS RECORD
R : NATURAL range 0 to 255;
G : NATURAL range 0 to 255;
B : NATURAL range 0 to 255;
END RECORD RGBType;

SIGNAL RGBSig : RGBType := (R=>0, G => 0, B => 0);
RGBSig.R <= 128;

RGBSig.G <= 0;
RGBSig.B <= 255;

Declarations and assignments

I/O
Needed to use the FPGA I/Os or as interface for a Component. (See Main)

Declaration
Structure: <Name> : <IN/OUT/INOUT/BUFFER> <Type> <Range> := <default>;
Example: Btn : IN STD_LOGIC;

Led : OUT STD_LOGIC_VECTOR (7 downto 0) := (others => ‘0’);

IN = Signal that can be read but not assigned a value

OUT = Signal that can be assigned a value but not be read

BUFFER = Signal that can output a value but this value can be read
INOUT = Signal that can be used as in- or output

Type: Unsualy STD_LOGIC or STD_LOGIC_VECTOR
Range: For STD_LOGIC_VECTOR either (... downto 0) or (O to ...

Default: Either none for e.g. an input or a value like ‘0’ (or (others => ‘0’) to set every bit to ‘0’ in a vector)

Assignment

Structure: <Name> <= <Value>;

Example: Led <= “00011100”; (same as x”1C” or (4 downto 2 => ‘1’, others => ‘0’))
Generic

Needed as parameter of a Component. (See Component)

Declaration
Structure: <Name> : <Type> := <default>;
Example: CLK_Frequency : NATURAL := 50000000;

Type: Often numbers (INTEGER or NATURAL)
Default: Useful, if you want to remove it in NewComponent

(Can only be read like a constant)

Signal

Needed as variable in a process or to let different processes talk to each other.

They can be declared everywhere where signals can be assigned or use the dedicated AttributeDeclaration{} section.
Signals can be written by one process but can be read in the whole file. If they are assigned in the process, the signal
will have the value in the next cycle (use Variable to set instantly).

Declaration
Structure: SIGNAL <Name> : <Type> <Range> := <default>;
Example: SIGNAL Counter : NATURAL O to 255 :=0;

Range: For INTEGER, NATURAL and POSITIVE: ... to ... -> will allow numbers from ... to ...
For STD_LOGIC_VECTOR or other vectors: (... to/downto ...) -> will have bit ... to ...

Default: Important if you e.g. write Counter <= Counter + 1; to set the value to start with.

Assignment
Structure: <Name> <= <Value>;
Example: Counter <= Counter + 1;

Different parts of a vector can be set in one cycle, but the value can be read in the next.

Variable

Needed as variable in a process and for fast processing.

They can be declared in a process or in the dedicated brackets of Process.

Variables can be written and read by one Process, but they will be set instantly. So you can write count := count + 1;
If (count = ...) with the increased value.

Declaration
Structure: VARIABLE <Name> : <Type> <Range> := default;
Example: VARIABLE Counter : UNSIGNED (7 downto 0) := (others => ‘0’);

Range & Default: same as Signal

Assignment
Same as with Signal, but use := except of <= (The VHDP IDE converts = to :=/<= automatically)

Constant
Needed as parameter in Main or a Component. Can be used like a Signal but can only be read.

Declaration
Structure: CONSTANT <Name> : <Type> := <value>;
Example: CONSTANT Width : NATURAL := 8;

Standard operations

If, Elsif, Else
Example

If(a=0){a:=1;}
Elsif(a=1){a:=2;}
Else{a:=0;}

Case, When
Example

Case (a)

{
When (0){a:=1;}
When(1to3){a:=a+1;}
When(4]6]8){a:=0;}
When (others) {a:=0;}

1

All possible numbers defined by range must have one when, but you can add When (others) { null; }.

For
Example

For (i IN 7 DOWNTO 1)
{

LED(i) <= LED(i-1);

If(i = exitValue) { exit; }
}

The for loop can count up (TO) or down (DOWNTO) between constant values. With exit; you can leave the loop
before it is finished. The name of the counter (i) can be used as variable.

Procedure operations
Verhalten in Process und Thread

Steplf, StepElsif, StepElse

Example
Thread
{
If (BTN = ‘1’) { LED <= ‘1"; } Steplf (BTN = “1’) { LED <= ‘1’; }
Wait (10000); Wait(10000);
1

First Steplf checks if the button is pressed, sets the led and afterwards Wait waits some time.

If you write the first code without Thread, “If” would ignore Wait and check if the button is pressed every cycle.
Thread converts the “If” to Steplf like in the second example. The difference in the second example is that the next
operations will also wait for the previous and you only have one “thread”.

StepCase, StepWhen

Example
Thread
{
Case (a) StepCase (a)
{ {
When (0) StepWhen (0)
{ {
Wait(1000); Wait(1000);
} }
When (others) StepWhen (others)
{ {
Wait(2000); Wait(2000);
1 }
} }
}
Step
Example
Thread Step
{ {
Length <= 100; Length <= 100;
En<=11% En<=1’;
Step {En<=0";} }
} Step {En<="0’; }

Thread will automatically put a Step around signal assignments, but Step is needed to wait one cycle between the
assighments.

While

Example

Thread
{

VARIABLE counter : INTEGER := 0;

While (counter < 8)
{
LED(counter) <= 1";
counter := counter + 1;
Wait(1000);
}
!

StepFor
Example

Thread
{

StepFor (VARIABLE counter : INTEGER := 0;

counter < 8;

counter := counter + 1)

{
LED(counter) <= 1’;
Wait(1000);
}

Wait
Example

Thread

{
LED <= 1’;
Wait(1000);
LED <= ‘0’;
Wait(1000);

}

While (counter < 8)

{
Step

{
LED(counter) <= ‘1’;
counter := counter + 1;

}
Wait(1000);

Same with While:

Thread

{
VARIABLE counter : INTEGER :=0;

counter :=0;

While (counter < 8)

{
LED(counter) <= 1";
Wait(1000);
counter :=counter + 1;

}

}

Step{ LED <=1’; }
Wait(1000);
Step{ LED <= ‘0"; }
Wait(1000);

Math, conversion and other operators

Operators
Example

If ((a AND b) = 1")

NOT complement

AND logical and

OR logical or

NAND logical complement of and

NOR logical complement of or

XOR logical exclusive or

XNOR logical complement of exclusive or

Use a different clock for Process:
rising_edge([clk name])
falling_edge([clk name])

Example:

If (Reset="0"){...}
Elsif (rising_edge(clk_50)) { ... }

Type conversion
TO_BIT(<STD_LOGIC>)

TO_BITVECTOR(<STD_LOGIC_VECTOR>)
TO_STDLOGICVECTOR(<BIT_VECTOR>)

SIGNED(<STD_LOGIC_VECTOR>)
UNSIGNED(<STD_LOGIC_VECTOR>)
STD_LOGIC_VECTOR(<SIGNED/UNSIGNED>)

TO_SIGNED(<INTEGER>, <SIGNED>'LENGTH)
TO_UNSIGNED(<NATURAL>, <UNSIGNED>'LENGTH)
TO_INTEGER(<SIGNED/UNSIGNED>)

Mathematical operations

+ addition

- subtraction

* multiplication
/ division

ok exponential

abs absolute value
Example

Result := ValA * ValB;
Result := abs(Result);

Concatenation (&, =>, others)

= test for equality

/= test for inequality

< test for less than

<= test for less than or equal

> test for greater than

>= test for greater than or equal

STD_LOGIC to BIT

STD_LOGIC_VECTOR to BIT_VECTOR
BIT_VECTOR to STD_LOGIC_VECTOR

STD_LOGIC_VECTOR to SIGNED
STD_LOGIC_VECTOR to UNSIGNED
SIGNED/UNSIGNED to STD_LOGIC_VECTOR

INTEGER/NATURAL/POSITIVE to SIGNED
NATURAL/INTEGER/POSITIVE to UNSIGNED
SIGNED/UNSIGNED to INTEGER

LED : OUT STD_LOGIC_VECTOR (7 downto 0) := (others => ‘0’);

LED <= “1111" & “0000”; -> “11110000”

LED <= (7 => ‘1", 6 downto 4 => “111”, others => ‘0’); -> “11110000”

